
Lecture II: BA for the XXZ spin chain

S. Lukyanov

The six vertex model

The story starts with the six vertex model, a statistical mechanics model which describes
2 dimensional ice and other crystals in which hydrogen bonding is responsible for holding
the lattice together. The crystal is pictured as a square array of atoms with M rows
and N columns. As in ice, between each adjacent pair of atoms there is a hydrogen ion
responsible for bonding, located close to one or the other of the two atoms which it binds.
They represent the degrees of freedom of the system and can be represented by arrows
pointing to one or the other atom along the bond. A configuration of the lattice is defined
when an arrow has been placed at each bond, and there are 2MN configurations in total.
The partition function is defined as:

Z =
∑

configurations

exp
(
− E
kT

)
,

where E is the energy of the configuration.

Figure 1: Two possible configurations of a 3 × 3
lattice. The oxygen atoms are represented by black
dots and the hydrogen ions by the red dots

To specify the energy of the lattice, first
consider the possible arrow configurations
about a specific atom, or vertex. There are
24 = 16 possible ways the arrows can be
drawn. In the six vertex model the “ice–
rule” is imposed, which states that at each
vertex two of the arrows must point to-
wards the vertex and two must point away
from the vertex. This is meant to mimic
the bonding of H2O in ice and reduces the
16 possible combinations to just 6 (see fig-
ure 2). Each one of these configurations is
given a particular energy εi, so that the to-
tal energy of the lattice is just the sum of

the energies of each vertex:

E = n1 ε1 + n2 ε2 + . . .+ n6 ε6 ,

where ni is the number of vertices of type i. This is the six vertex model in its most
general form. If the crystal is not placed in an external field, so that there is no preferred
direction, the energy of a vertex with all arrows reserved should be the same as the
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Figure 2: The six possible vertex configurations allowed by the ice–rule

energy of the original vertex. In this case the lattice possesses a Z2 symmetry, that of the
inversion of all arrows, i.e.,

ε1 = ε2 , ε3 = ε4 , ε5 = ε6 .

In this case the model is called the zero–field six vertex model.

Boundary conditions and the Energies

Figure 3: A lattice with twisted bound-
ary conditions displayed

We should also choose boundary conditions for the
model. Boundary conditions that will be considered
here are called toroidal boundary conditions. For
toroidal boundary conditions, the atoms at the op-
posite boundaries (left, right and top, bottom) are
considered to be adjacent (see figure 3). Toroidal
boundary conditions imply that ε5 = ε6 without
reference to Z2 symmetry. Consider a horizontal
row. Vertex 5 is a sink for arrows and vertex 6 is
a source. The lattice is periodic in the horizontal
direction so the number of sources must be equal
to the number of sinks. Therefore, ε5 and ε6 only
appear in the partition function in the combination
ε5 + ε6 and can be set to be equal to each other.

Toroidal boundary conditions are easily general-
ized to twisted boundary conditions. In this case, the lattice is periodic in the vertical
direction and the horizontal direction, but iθ is added to the energy if the arrow on the
horizontal boundary points to the right, and −iθ is added if the arrow points to the left
(see figure 3). In this report, the six vertex model is assumed to be a zero–field six vertex
model with twisted boundary conditions. The partition function is a function of only
three Boltzmann weights and the twist parameter:

Z = Zθ(a, b, c) .

Given εi, the problem is to calculate the statistical sum Z over the possible configu-
rations of arrows which satisfy the ice–rule. The solution to this problem was key in the
development of Quantum Integrability.
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Solving the model

Relation to particle scattering

Figure 4: The vertex representing the
scattering of two particles. Ri′α′

iα gives the
scattering amplitude for this process.

The vertices of the crystal lattice can be interpreted
in terms of the scattering of particles. Consider the
vertex turned on its side (see figure 4) and let time
point in the vertical direction. There are two types
of arrows. An arrow pointing in the direction of
positive time is considered to be a particle, and an
arrow pointing in the negative direction of time is an
anti–particle. The vertex symbolizes scattering and
the Boltzmann factors, exp

(
εi
kT

)
, are the scattering

amplitudes for these processes to occur. The “ice–
rule” has the meaning that the “particle charge“
is conserved in the interaction, where a particle is
assigned a charge of +1 and an anti–particle is as-
signed a charge of −1.

The scattering amplitudes of a particular inter-
action can be stored in a matrix, called the R–
matrix. Each leg represents a two dimensional space

spanned by:
|+〉 − a particle |−〉 − an anti–particle .

The bottom legs correspond to incoming particles, and the top legs are the outgoing
particles. The R–matrix acts from the incoming spaces to the outgoing spaces:

R : C2 ⊗ C2 → C2 ⊗ C2

Using the basis: {|i〉 ⊗ |α〉} with i, α = ± the R–matrix is:

(R)i
′α′

iα =


a 0 0 0
0 b c 0
0 c b 0
0 0 0 a


where a, b, c are the Boltzmann weights:

a = exp
(
− ε1
kT

)
b = exp

(
− ε3
kT

)
c = exp

(
− ε5
kT

)
.

The transfer matrix

The calculation of the partition function is done by methods that are now standard in
Quantum Integrability and can be found in many references. Consider a single row of the
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Figure 5: A row of the lattice where the legs are considered as Quantum and Auxiliary Spaces

lattice and use the notation employed in (1). Each vertical leg is considered to be the
space C2 with the basis:

|+〉 − up arrow, |−〉 − down arrow .

This space is denoted as the quantum space. The horizontal legs are also considered to
be C2 but is called the auxiliary space. It has the basis:

|+〉 − arrow pointing right, |−〉 − arrow pointing left .

The R matrix is an operator that acts on the tensor product of the quantum space and
the auxiliary space. Denote the R–matrix acting on the ith Quantum Space in the lattice
i as Ri. Construct the monodromy matrix:

M ≡
(

M(+,+) M(+,−)
M(−,+) M(−,−)

)
M = R1 R2 . . .RN ,

where the multiplication is carried out in the auxiliary space. Each matrix element
M (α1, αN) acts on N copies of C2:

M(α1, αN) : C2 ⊗ C2 ⊗ . . .⊗ C2︸ ︷︷ ︸
N times

→ C2 ⊗ C2 ⊗ . . .⊗ C2︸ ︷︷ ︸
N times

.

The transfer matrix is defined to be the trace of the monodromy matrix over the auxiliary
space:

T = Trauxilary

(
eiθσ3

M
)

= M(+,+) eiθ + M(−,−) e−iθ

where eiθσ3
imposes the twisted boundary conditions. The partition function is then

expressed in terms of the transfer matrix as:

Zθ(a, b, c) = Trquantum

[
TM

]
,

and the problem reduces to the calculation of the eigenvalues of T . Let Λ0,Λ1,Λ2 . . . be
the eigenvalues of T so that:

Λ0 > Λ1 > Λ2 > . . .
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Figure 6: The condition (1) drawn diagrammatically

In the thermodynamic limit, N,M →∞, the largest eigenvalue gives a dominant contri-
bution:

logZ = M log Λ0 + log

(
1 +

(Λ1

Λ0

)M
+
(Λ2

Λ0

)M
+ . . .

)
.

Commuting transfer matrices

Diagonalizing large matrices is a standard problem in Quantum Mechanics which is often
tackled by finding operators that mutually commute. A big step towards the solution of
the six vertex model was the realization that the transfer matrices for different six vertex
models commute. Write the dependence of the transfer matrix on the parameters of the
model a, b, c explicitly. The condition that two transfer matrices commute is:

T (a, b, c)T (a′, b′, c′) = T (a′, b′, c′)T (a, b, c) .

A sufficient condition is that:

S
(
M (a, b, c)⊗ I

) (
I⊗M (a′, b′, c′)

)
=
(
I⊗M (a′, b′, c′)

)(
M (a, b, c)⊗ I

)
S , (1)

and [
S, eiθσ3 ⊗ eiθσ3]

= 0 .

The condition (1) is shown pictorially in figure 6. This, in turn, is satisfied if the same
relation is valid for a single R matrix:

S
(
R(a, b, c)⊗ I

) (
I⊗R(a′, b′, c′)

)
=
(
I⊗R(a′, b′, c′)

)(
R(a, b, c)⊗ I

)
S . (2)

The pictorial representation is given in figure 7. The equation (2) is in fact 64 equations.
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Figure 7: Diagrammatical representation of the RLL relation

It can be shown that the matrix S must have the same form as R, i.e.,

S =


a′′ 0 0 0
0 b′′ c′′ 0
0 c′′ b′′ 0
0 0 0 a′′

 .

Note that this form automatically commutes with eiθσ3 ⊗ eiθσ3
.

Exercise: Show that the the 64 equations (2) reduce to just 3 non–trivial equations:

ac′a′′ = bc′b′′ + ca′c′′

ab′c′′ = ba′c′′ + cc′b′′

cb′a′′ = ca′b′′ + bc′c′′ .

A solution for non-zero a′′, b′′, c′′ exists if:

∆′ = ∆ , where ∆ =
a2 + b2 − c2

2ab
∆′ =

a′2 + b′2 − c2

2a′b′
.

It is convenient to parameterize the weights by:

b

a
=

λ− λ−1

λq−1 − λ−1q
,

c

a
=

q−1 − q
λq−1 − λq

, ∆ =
1

2
(q + q−1) . (3)

Such a parameterization is convenient because ∆ does not depend on λ, which is referred
to as the spectral parameter. a′′, b′′, c′′ in S can be solved for and the result is:

R12(λ/µ)R13(λ)R23(µ) = R23(µ)R13(λ)R12(λ/µ)

where the indices denote the spaces on which the R matrices act. This equation is very
famous in Quantum Integrability and is known as the Yang–Baxter equation.
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Thus we can set

T (λ) =
(
− λq−

1
2

)N
Tr

[(
eiθ 0
0 e−iθ

)
R1(λ)R2(λ) · · ·RN(λ)

]
(4)

where

R
(
λq

1
2

)
=

(
λq−h/2 − λ−1qh/2 (q−1 − q) e−

(q−1 − q) e+ λqh/2 − λ−1q−h/2

)
and

h = σz , e± = 1
2

(σx ± iσy) .

Notice that the overall factor in (4) is set in such a way that the matrix elements of T
are polynomials in λ2 of order N :

(T )j1...jNi1...iN
← a polynomial in λ2 of order N .

The final result is that two transfer matrices of the six vertex model (4) commute, if
their anisotropy parameters are the same. This is generally written as:[

T (λ), T (µ)
]

= 0 .

The Heisenberg XXZ spin-chain

A second crucial observation was that the six vertex model was related to the Heisenberg
XXZ spin-chain, a model of ferromagnetism solved by Hans Bethe in the 1930’s. The
XXZ Hamiltonian is defined as a collection of N spins on a lattice which interact via
nearest neighbor interactions. The Hamiltonian is:

HXXZ = −J
N∑
i=1

(
σxi σ

x
i+1 + σyi σ

y
i+1 + ∆σzi σ

z
i+1

)
,

where σai are the Pauli spin matrices at site i.

Exercise: Show that HXXZ(−J,−∆) can be obtained from HXXZ(J,∆) by a unitary
transformation, i.e., without loss of generality, the dimensionful coupling constant J can
be chosen to be positive.

For the twisted boundary conditions imposed on the six vertex model,

σ±N+1 = e±2iθ σ±1 , (−π < 2θ ≤ π) .

the logarithmic derivative of the transfer matrix is equal to the XXZ Hamiltonian up to
the addition of an inessential constant.

HXXZ = J (q − q−1)λ∂λ logT (λ) |λ= 1 − J (q − q−1)N + JN ∆ .
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The transfer matrix commutes with the Hamiltonian for any λ and is a continuous
family of integrals of motion of the XXZ model. By expanding the transfer matrix in
λ, It is possible to construct an infinite number of mutually commuting quantities which
also commute with the Hamiltonian. Finding the eigenvalues of T is equivalent to finding
the energies of the spin chain as well as the eigenvalues of all the conserved quantities.
The transfer matrix is a powerful tool for solving the spin chain.

In 1931, Hans Bethe had derived a method for computing the eigenvalues and eigen-
vectors of the Heisenberg spin chain. This same method was applied successfully in the
1960s to the six vertex model and goes by the name of the Bethe Ansatz.

The Bethe Ansatz

The method derived by Hans Bethe was to start with a general Ansatz for the eigenvectors,
and to use the eigenvalue equation to derive an algebraic system which could be solved
for both the eigenvectors and the eigenvalues. However, in the way formulated by Bethe,
it is difficult to generalize the Ansatz to other physical problems. The main contribution
of Baxter was to interpret the Bethe Ansatz equations as equations for the zeroes of what
he called the “auxiliary matrix”. This operator is now known as the Q–operator, and
has become important in the study of Quantum Integrable systems. However, it is not
well understood what the Q–operator is, and it will only be claimed that such an object
exists. The construction of the Q operator is much beyond the scope of these lectures.

TheXXZ Hamiltonian as well as the Transfer Matrix commute with the spin operator:[
Sz,T (λ)

]
= 0 , Sz = 1

2

∑
j

σzj .

Therfore, it is only necessary to consider a particular sector of the transfer matrix with n
down spins. Let Sz be the value of the spin operator Sz in this sector.

Sz =
N

2
− n .

Since

V HXXZV
−1 = HXXZ , V SzV −1 = −Sz where V = exp

(
iπ
2

N∑
j=1

σxj

)
,

we shall always assume below that Sz ≥ 0 without loss of generality.
In his work on the 6 vertex model, Baxter found an operator Q(λ) which satisfies the

following properties:

1. Commutation Relations:[
Q(λ), T (µ)

]
=
[
Q(λ), Q(µ)

]
= 0 .
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2. Its elements are polynomials in λ2:

Qj1...jN
i1,...iN

= λ
θ
πg

+Sz ×
(

a polynomial in λ2 of order n = N
2
− Sz

)
. (5)

3. It satisfies the TQ–relation:

Q(λ)T (λq
1
2 ) =

(
1− λ2q−1

)N
Q(λq) +

(
1− λ2q

)N
Q(λq−1) . (6)

The first step is to transform to a basis where Q and T are both diagonal. Note that the
eigenvalues of Q(λ) will still have the polynomial form (5) since the change of basis matrix
can not depend on λ and the TQ–relation remains unchanged. Focus on a particular
eigenvalue of Q, Q(λ), and the corresponding eigenvalue of the transfer matrix, T (λ).
Let {λ2

k} be the zeroes of Q(λ). Then it is possible to factorize the polynomial:

Q(λ) = λ
θ
πg

+Sz

N
2
−Sz∏
j=1

(
1− λ2

λ2
j

)
Now evaluate the TQ–relation at a zero λ = λk. The left hand side is zero since T (λ) is
an entire function of λ in the complex plane excluding λ = 0. Equating the right hand
side to zero yields:

(
1− λ2

k q

1− λ2
k q
−1

)N
= −q2Sz e2iθ

N
2
−Sz∏
j=1

λ2
j − λ2

k q
2

λ2
j − λ2

k q
−2

. (7)

These are the Bethe Ansatz equations. Solving them, it is possible to find the zeroes
λ2
k of the Q–operator, reconstruct the eigenvalues Q(λ) using equation (7) and find the

eigenvalues of the transfer matrix T (λ) using the TQ–relation (6).

The phase diagram

The exact solution allows one to investigate the physical properties of the model. It
turns out that for ∆ > 1, the ground state of the Heisenberg magnet is ferromagnetically
ordered, ∆ < −1 it is anti-ferromagnetically ordered, while −1 < ∆ < 1 is the disordered
regime of the magnet.

Bethe Ansatz v.s. exact Bohr-Sommerfeld

The solution of the six vertex model has been reduced to the mathematical problem of
analyzing the algebraic system (7). In what follows we will focus on the disordered phase
where −1 < ∆ < 1, i.e., the parameter q is a pure phase.

q = eiπg (0 < g < 1) .
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∆ > +1

Antiferromagnetic Ferromagnetic

Disordered

−1 < ∆ < +1∆ < −1

Figure 8: The phase diagram for the XXZ spin chain at zero temperature.

First of all let us make the following formal observation. on the BA equations (7).
Assuming that λ2

j ∼ CN Ej−1, CN = o(N−1) as N →∞:

e4πigk

∞∏
j=0

(
1− En q2/Ej

)(
1− En q−2/Ej

) = −1 , 2k ≡ θ

gπ
+ Sz ,

which coincides with the exact Bohr-Sommerfeld quantization condition provided

g =
1

α + 1
, 2k = `+ 1

2
.

This gives a hint that the 6-vertex model has a deep relation to the problem discussed in
the first lecture.

The Bethe Ansatz equations and scaling

It is convenient to substitute the spectral parameter λ by x:

λ2 = −e2x .

In these new variables, the Bethe Ansatz equations become:[
cosh

(
xk + iπg

2

)
cosh

(
xk − iπg

2

)]N = −e2iθ

n∏
j=1

sinh
(
xj − xk − iπg

)
sinh

(
xj − xk + iπg

)
Taking the logarithm of both sides yields:

1

2πi
N log

[
cosh

(
xk + iπg

2

)
cosh

(
xk − iπg

2

)] = Ij +
θ

π
+

1

2πi

n∑
j=1

log

[
sinh

(
xk − xj + iπg

)
sinh

(
xj − xk + iπg

)] , (8)

where Ij are a set of n ≡ N
2
− Sz integers (for n odd) or half–integers (for n even) that

arise from the ambiguity of the logarithm function.
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Different choices of the half–integers Ij correspond to different sets of solutions of
equation (8) for the Bethe roots xj. Each solution is used to reconstruct a particular
eigenvalue of T . To solve the Bethe Ansatz equations numerically for a particular eigen-
value, it is important to have some intuition as to where the roots, xj, corresponding to
that eigenvalue lie in the complex plane. Not only will this allow the half–integers Ij to
be chosen correctly, but it is needed to construct the numerical algorithm to solve for the
roots. For 0 < g < 1

2
, Yang and Yang rigorously proved that for the ground state, the

roots xj are real and correspond to the following choice of the Ij’s:

Ij = −n+ 1

2
+ j (j = 1, . . . , n)

Notice that for zero twist, the roots xj lie on the real line, symmetrically about the origin,
and as closely packed as possible (see figure 9).

-3 -2 -1 0 1 2 3

Figure 9: The distribution of the Bethe roots for the ground state in the sector Sz = 0,
for N = 100, g = 1

3
and θ = 0.

Scaling

Label the Bethe roots in ascending order, so that:

x1 < x2 < x3 < . . . < xn .

The following limit is called the scaling limit of the roots:

ρj = lim
N→∞

(
N2−2g e+2xj

)
(j = 1, 2, . . .− fixed) (9)

ρ̄j̄ = lim
N→∞

(
N2−2g e−2xn−j̄

)
(j̄ = 1, 2, . . .− fixed)

Figure 10 shows how the first four roots approach the limit: as N increases, the left most
roots tend to negative infinity according to (9). It is possible to show that

ρ
1

2(1−g)
j = π j +O(1) , ρ̄

1
2(1−g)
j̄

= π j̄ +O(1) as j, j̄ →∞ . (10)

The corresponding scaling limit of the vacuum eigenvalues of the Q operator is:

lim
N→∞

(
λ−1N1−g)Sz+ θ

πg Q
(
N g−1 λ

)
=

∞∏
j=1

(
1− λ2

ρj

)
.

Evidence for the existence of the limit is illustrated in figure 11. Similarly one has for the
right edge of the distribution of the Bethe roots

lim
N→∞

(
λN1−g)Sz− θ

πg
[
Q
(
N g−1 λ

)
/(N g−1λ)N

]
=

∞∏
j=1

(
1− λ−2

ρ̄j̄

)
.
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Figure 10: A plot of N
π e

2xj
1−g for j = 1, 2, 3, 4 as a function of N showing that as N → ∞ a limiting

value is approached. The parameters have been set to g = 1
3 , n = N

2 and θ = 0.
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Figure 11: A plot of A(λ) =
(
N1−g)Sz+ θ

πg Q
(
Ng−1 λ

)
for N = 200, 400, 800 and N = 1600. The

values of the parameters are: Sz = 2, g = 1/3, θ = −0.1.

The ODE/IM correspondence

Let
{
Ej−1

}∞
j=1

and
{
Ēj̄−1

}∞
j̄=1

be ordered spectral sets of eigenvalues of the operators,

H = − d2

dz2
+ Ueff(z) H̄ = − d2

dz̄2
+ Ūeff(z̄)

where

Ueff(z) =
`(`+ 1)

z2
+ z2α , Ūeff(z̄) =

¯̀(¯̀+ 1)

z̄2
+ z̄2α ,

then

lim
N→∞

(
N2−2g λ2

j

)
= −C Ej−1 lim

N→∞

(
N2−2g λ−2

n−j̄

)
= −C Ēj̄−1

provided

α =
1

g
− 1 , ` = Sz +

θ

πg
− 1

2
, ¯̀= Sz − θ

πg
− 1

2
, (11)

and

C = π
2α

1+α/C0 =

[
2Γ
(

3
2

+ 1
2α

)
√
πΓ
(
1 + 1

2α

) ]− 2α
1+α

. (12)
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Notice that the explicit form of the proportionality coefficient C0 follows from the WKB
asymptotic for En (see Exercise I.3) and eq.(10).

The correspondence stated here is only valid for the vacuum states in the given spin
sector of the XXZ spin chain. The correspondences for the excited states are the same,
except that the potential Ueff(z) has extra terms added to it.

Bethe states for the edges of the roots distribution ↔
pairs of the “monster” potentials

(
Ueff(z), Ūeff(z̄)

)
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Exercises

Exercise II.1. Consider the “monodromy matrix”

M(λ) = R1(λ)R2(λ) · · ·RN(λ) , (13)

where

R(λ) =

(
λq−h/2 − λ−1qh/2 (q−1 − q) e−

(q−1 − q) e+ λqh/2 − λ−1q−h/2

)
and h, e± stand for the formal operators satisfying commutation relations

[h, e±] = 2 e± , [e+, e−] =
q

h
2 − q− h

2

q
1
2 − q− 1

2

. (14)

Show that M(λ) obeys the Yang-Baxter algebra of the form

R(λ/µ)
(
M(λ)⊗ I

)(
I⊗M(µ)

)
=
(
I⊗M(µ)

)(
M(λ)⊗ I

)
R(λ/µ) (15)

where

(R)i
′α′

iα =


λq−1 − λ−1q 0 0 0

0 λ− λ−1 q−1 − q 0
0 q−1 − q λ− λ−1 0
0 0 0 λq−1 − λ−1q


Exercise II.2: Show that HXXZ(−J,−∆) can be obtained from HXXZ(J,∆) by a

unitary transformation, i.e., without loss of generality, the dimensionful coupling constant
J can be chosen to be positive.

Solution

HXXZ(−J,−∆) = U HXXZ(J,∆)U−1 , U = exp
(

iπ
2

N∑
j=1

j σzj

)
Exercise II.3: Show that the energies in the XXZ spin chain can be calculated using

the formula

EXXZ/J = −N∆ + 4

N
2
−Sz∑
j=1

(
∆− cos(pj)

)
, (16)

where

eipj = q
1− q−1λ2

j

1− qλ2
j

. (17)
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Exercise II.4: (a) Show that the BA equations (8) with Ij = −n+1
2

+j can be brought
to the form of the extremum condition

∂Y (N)

∂xj
= 0 (18)

for the so-called the Yang-Yang functional

Y (N)(x1, . . . , xn) =
∑
j

(
V (xj)−

θxj
π

)
+

1

2

∑
j 6=l

U(xj − xl) . (19)

Here V (x) and U(x) stand for the functions

V (x) = −N
2π
−
∫ ∞
−∞

dω

ω2

sinh(πωg
2

)

sinh(πω
2

)
eiωx , (20)

and

U(x) =
1

π
−
∫ ∞
−∞

dω

ω2

sinh(πωg
2

) cosh(π(1−g)ω
2

)

sinh(πω
2

)
eiωx , (21)

where the symbol −
∫

denotes the principal value integral.

(b) Show that U(x) and V (x) for x ∈ R, are real, continuous, even functions such that

U(x) → −g |x|+O
(
e−2|x|) , as x→ ±∞ (22)

V (x) → +
Ng

2
|x|+O

(
e−2|x|) , as x→ ±∞ .

Thus the BA eqs.(8) with Ij = −n+1
2

+ j can be interpreted as an equilibrium condition
for the system of N one-dimensional “electrons” in the presence of confining and linear
external potentials. For large separations, x � 1, the 2-body potential U(x) (21) is
essentially a 1D repulsive Coulomb potential slightly modified at short distances. At the
same time V (x) (20) can be interpreted as the potential produced by the heavy positive
charge +Ng

2
placed at x = 0. In order to have an equilibrium configuration, the external

linear potential − θ
π
x should be sufficiently weak:

|θ|
πg
< N

2
− n+ 1 = Sz + 1 . (23)

(c) Show that for 0 < g < 1
2

the Hessian of the system (19), ∂2Y (N)

∂xj∂xn
, is positive definite.

Exercise II.5. (a) Show that for g = 1
2
, the vacuum Bethe roots are given by equation

e2xj = tan
[
π
N

(
j − 1

2
+
(

θ
2πg

+ 1
2
Sz
)) ]

(j = 1, 2, . . . , n) . (24)
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Notice that x1 goes to −∞ as
(
− θ

2πg

)
→ 1

2
(Sz + 1). Using the result of the previous

exercise interpret this observation. Also notice that, in the case g = 1
2

ρj = lim
N→∞

Ne+2xj = π
[
j − 1

2
+
(

+ θ
2πg

+ 1
2
Sz
) ]

(j = 1, 2, . . . − fixed) (25)

ρ̄j̄ = lim
N→∞

Ne−2xn−j̄ = π
[
j̄ − 1

2
+
(
− θ

2πg
+ 1

2
Sz
) ]

(j̄ = 1, 2, . . . − fixed)

(b) Show that the vacuum energy for the XXZ spin chain with ∆ = 0 is given by

EXXZ = −4J

N
2
−Sz∑
j=1

cos(pj) , pj = π
2
− 2π

N

(
j − 1

2
+
(
θ
π

+ 1
2
Sz
))

. (26)

Exercise II.6. Using the results of the previous two exercises, write a code for the
iterative solution of the vacuum BA equations for 0 < g < 1

2
. The initial position of the

roots can be approximated by

xj ≈ (1− g) log

(
tan
[
π
N

(
j − 1

2
+
(

θ
2πg

+ 1
2
Sz
)) ])

(j = 1, 2, . . . , n) . (27)

Exercise II.7. In the thermodynamic limit, N → ∞, the number of Bethe roots
goes to infinity and they form a density. Using the numerical solution of the BA equation
demonstrate that for large N and finite Sz, the distribution of the BA roots

D(N)(xn+ 1
2
) =

2

N(xn+1 − xn)

(
xn+ 1

2
≡ 1

2
(xn+1 + xn )

)
, (28)

is well approximated by the continuous density D(x).
(a) Using the result of Exercise II.5 show that for g = 1

2

D(x) =
2

π

1

cosh(2x)
. (29)

(b) Show that for any 0 < g < 1.

D(x) =
1

π(1− g)

1

cosh( x
1−g )

. (30)

Exercise II.8. Show that

ρ
1

2(1−g)
j = π j +O(1) , ρ̄

1
2(1−g)
j̄

= π j̄ +O(1) as j, j̄ →∞ . (31)

Exercise II.8. One also has the following relations involving the function Θk(ω)
introduced in Exercise I.5:

∞∑
j=1

ρ
− iω

2(1−g)
j =

Γ( iω
2α

)Γ(−1
2

+ iω
2

)
√
π 21+iω Γ( i(1+α)ω

2α
)

(C)−
iω(1+α)

2α Θk(ω)

∞∑
j=1

ρ̄
− iω

2(1−g)
j =

Γ( iω
2α

)Γ(−1
2

+ iω
2

)
√
π 21+iω Γ( i(1+α)ω

2α
)

(C)−
iω(1+α)

2α Θk̄(ω) ,
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where it is assumed that =m(ω) < −1 and

k = 1
2

(
Sz + θ

g

)
, k̄ = 1

2

(
Sz − θ

g

)
. (32)
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