
Lecture III: The Thirring Model
S. Lukyanov

Jordan–Wigner transformation

The goal of this lecture is to better understand the scaling limit. To do this, start with
the Heisenberg XXZ model. The Heisenberg XXZ model describes a system of N one
dimensional spins on the line with nearest neighbor interactions. The Hamiltonian is:

HXXZ = −J
N∑
m=1

(
σxm σ

x
m+1 + σym σ

y
m+1 + ∆σzm σ

z
m+1

)
, (1)

where the Pauli Matrices σam act on the mth site. The quasiperiodic boundary conditions
are:

σ±N+1 = e±2iθ σ±1 . (2)

The Hamiltonian commutes with the total spin operator Sz:

Sz =
1

2

N∑
m=1

σzm ,

so that the total number of up spins n is conserved by the Hamiltonian. The Heisenberg
spin chain can be converted to a system of fermions by the Jordan–Wigner transformation.

The Pauli Matrices at a particular site satisfy the fermionic anti–commutation rela-
tions:

{σ+
m, σ

+
m} = 0 , {σ−m, σ−m} = 0 , {σ+

m, σ
−
m} = 1 . (3)

In other words, the σ±m behave as:

σ+
m ∼ ψ†m , σ−m ∼ ψm ,

where the vector space at site i, C2 is spanned by the basis vectors:

|+〉 =

(
1
0

)
, |−〉 =

(
0
1

)
.

However, the Pauli matrices at different sites do not anticommute. In order to really
consider the system of spins as fermions, it is necessary to multiply the Pauli matrices
by some operator, Cm, so that the anti–commutation relations (3) are preserved and the
Pauli matrices at different sites anti–commute. A simple way to satisfy this would be if
the Cm commute with σaj for j ≥ m and anti–commute with σaj for j < m. For two spins:

Ψ†1 = σ+
1 , Ψ1 = σ−1 ,

Ψ†2 = e
iπ
2
σz1 σ+

2 , Ψ2 = e−
iπ
2
σz1 σ+

2 ,
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where e
iπ
2
σz1 = iσz1. The generalization to N spins is trivial:

Ψ†m = exp
(
− iπ

2

∑
j<m

σzj

)
σ+
m

Ψm = exp
(

+
iπ

2

∑
j<m

σzj

)
σ−m

which can be equivalently written as:

σ+
m = exp

(
+ iπ

∑
j<m

(
Ψ†j Ψj − 1

2

))
Ψ†m

σ−m = exp
(
− iπ

∑
j<m

(
Ψ†j Ψj − 1

2

))
Ψm

due to the identity: σz = 2ψ†ψ − 1.

Exercise III.1: Show that the Jordan–Wigner transformation maps the Hamiltonian
XXZ-spin chain (1),(2) to

HXXZ = −2J
N∑
m=1

(
i
(

Ψ†mΨm+1 −Ψ†m+1 Ψm

)
+ 2∆

(
Ψ†mΨm − 1

2

)(
Ψ†m+1Ψm+1 − 1

2

) )
,

where the fermions satisfy the Boundary Conditions (BC)

Ψ†N+1 = −e−iπSz+2iθ Ψ†1 , ψN+1 = −Ψ1 e+iπSz−2iθ . (4)

Low energy effective theory for ∆ = 0

Clearly it make sense to start with the case ∆ = 0, where the Hamiltonian describes a
system of free fermions and can be easily diagonalized. For simplicity, let us assume that
that N is an even number, i.e., Sz is an integer. Apply the Fourier transform

Ψm =
i−m√
N

N−M∑
j=−M+1

cj eimkj

Ψ†m =
i+m√
N

N−M∑
j=−M+1

c
†
j e−imkj .

Here M stands for the integer part of N
4

. The expansion coefficients cj satisfy the anti–
commutation relations:

{c†m, cl} = δm,l {c†m, c
†
l} = {cm, cl} = 0 .
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Figure 1: A plot of the dispersion relation ε = −4J cos(k) for the first Brillouin zone.

Admissible values for the quasimomentum k follow from the twisted BC (4):

kj = π
2
− 2π

N

(
j − 1

2
+
(
θ
π

+ 1
2
Sz
))

. (5)

Substituting this into the Hamiltonian HXXZ with ∆ = 0 yields:

H =
∑
j

ε(kj) c
†
j cj , where ε(k) = −4J cos(k) . (6)

The operators cj should be thought of as the creation and annihilation operators of a
particle with definite momentum kj and with the dispersion relation ε = ε(k). A plot of
the dispersion relation is given in figure 1.

For quasimomentum kL ≤ kj ≤ kR,

kL = −π
2

+ 2π
N

(
1
2
− θ

π
+ 1

2
Sz
)
, kR = +π

2
− 2π

N

(
1
2

+ θ
π

+ 1
2
Sz
)
, (7)

the energy of the particle is negative. In the ground state, these energy levels are filled
and form a Fermi sea, so that the vacuum energy is given by

E(vac) = −4J

N
2
−Sz∑
j=1

cos(kj) . (8)

Exercise III.2. Show that, as N goes to infinity,

E(vac) = −4JN

π
− 4J

π

6N

(
1− 12 θ2 − 3 (Sz)2

)
+O(N−3) . (9)

The excited energy states are particles of positive energy or holes in the Fermi sea. As
an illustration, let us focus on the case Sz = θ = 0. Introduce the notations

a 1
2
−j = cj , −M + 1 ≤ j ≤ 0

aj− 1
2

= c
†
j , 1 ≤ j ≤M
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and

aj− 1
2

= c
†
N
2

+j
, M − N

2
< j ≤ 0

b 1
2
−j = cN

2
+j , 1 ≤ j ≤ N

2
−M

(recall that M = [N/4]). The low energy physics is described by the low energy hole
and particle excitations that lie close to the “Fermi surface” k ∈ {kR, kL}, where the
dispersion is approximately linear:

ε = 4J sin(2|ν|π
N

) ≈ 8πJ
N
|ν| , ν = ±1

2
, ,±3

2
. . . � N .

The dynamics of the low-energy excitations is captured by the effective Hamiltonian:

HXXZ = −4JN

π
+

8πJ

N

[
− 1

12
+

∞∑
ν=± 1

2
,± 3

2
...

|ν|
(
a†ν aν + b†ν bν

) ]
+O(N−3) .

Notice that the parameter

a = (4J)−1

has the dimension of length and can be interpreted as a dimensionful lattice spacing. The
scaling limit is a→ 0, N →∞ while the macroscopic length of the system,

R = aN ,

is kept fixed. The scaling limit lead to a low energy effective Hamiltonian

Heff = − 1

π

R

a2
+

2π

R

[
− 1

12
+

∞∑
ν=± 1

2
,± 3

2
...

|ν|
(
a†ν aν + b†ν bν

) ]
, (10)

which describes the physics of the system at energy scales significantly below that of the
microscopic energy scale J . The first term here diverges as a → 0. It is proportional to
the size of the system and represents the contribution of the modes whose energy exceed
the ultraviolet (UV) cut-off scale ΛUV = a−1. This “quadratic” divergency is absorbed by
the so-called counterterm of the identity operator and is ignored in the context of QFT.
The term − πc

6R
with c = 1 is somewhat universal and can be interpreted as the Casimir

energy. The spectrum of the effective Hamiltonian is given by

Eeff = −R
a2

+
2π

R

[
− 1

12
+

1

2

(
L+ L̄

) ]
, L, L̄ = 0, 1, 2, . . . .

The nonnegative integers L and L̄ represent the contributions of the modes with half-
integers ν > 0 and ν < 0, respectively.
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In the scaling limit the lattice fermions are approximated as

Ψm ≈
√
a
[

i−m ψR(x1) + i+m ψ†L(x1)
]

Ψ†m ≈
√
a
[

i+m ψ†R(x1) + i−m ψL(x1)
]
, (11)

where x1 = ma and the continuous Fermi fields

ψR(x1) = R−
1
2

∑
ν=+ 1

2
,+ 3

2
, ...

(
aν e2πiν x

1

R + b†ν e−2πiν x
1

R

)
ψL(x1) = R−

1
2

∑
ν=− 1

2
,− 3

2
, ...

(
aν e2πiν x

1

R + b†ν e−2πiν x
1

R

)
obey the canonical anticommutation relations

{ψ†R(x1), ψR(y1)} = {ψ†R(1x), ψR(y1)} = δ(x1 − y1) ,

{ψR,L(x1), ψR,L(y1)} = {ψ†R,L(x1), ψ†R,L(y1)} = 0 (12)

and the antiperiodic boundary conditions1

ψ±(x1 +R) = −ψ±(x1) .

Notice that here we use the QFT notation x1 for the space coordinate. The time variable
will be denoted below by x0.

The low energy effective Hamiltonian can be expressed in terms of ψR,L.

Exercise III.3.: Show that, ignoring the quadratic divergency, the Hamiltonian (10)
can be written in the form

Heff =

∫ R

0

dx1 H0(x) , (13)

H0(x) = − i

2

(
ψ†R∂1ψR + ψR∂1ψ

†
R − ψ

†
L∂1ψL − ψL∂1ψ

†
L

) (
∂1 = ∂

∂x1

)
.

Hint: In the analytical regularization the divergent sum 1
2

+ 3
2

+ 5
2

+ . . . is replaced by
the Hurwitz zeta function ζ

(
− 1, 1

2

)
= 1

24
.

In the Lagrangian description both the canonical (anti)commutation relations and
Hamiltonian are encoded by means of the Lagrangian.

Exercise III.4.: Show that the Lagrangian density corresponding to the canonical
anticommutation relations (12) and the Hamiltonian (13) is given by

L0(x) = i
(
ψ†R∂+ψR + ψR∂+ψ

†
R + ψ†L∂−ψL + ψL∂−ψ

†
L

)
, where ∂± = 1

2
(∂0 ± ∂1) . (14)

1Recall that we are focusing here on the scaling limit of the XXZ spin chain with ∆ = Sz = θ = 0.
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Notice that L0(x) is a local function built from the local fermionic fields ψR,L(x) taken
at the same space-time point x = (x0, x1).

The classical equations of motion corresponding to the Lagrangian density (14) read
as

∂+ψR = 0 ∂−ψL = 0 . (15)

In the case of infinite volume, i.e. R =∞, a general solution of these equation represent a
traveling wave propagating with a constant speed either to the right

(
ψR = ψR(x0−x1)

)
,

or to the left
(
ψR = ψR(x0 + x1)

)
.2 Notice that there is a freedom in the definition of the

lattice spacing a ∝ J−1. In the above considerations, we set the proportionality coefficient
in the relation between a and J−1 as 1

4
. With this choice, the “speed of light” turns out

to be one. This is a standard convention used in QFT.

Low energy effective theory for −1 < ∆ < 1

We now turn to the description of the low energy physics for the general XXZ model in
the disordered phase. In our analyses, in order to avoid some technical complexification
related to the finite size effects, it is useful to start with the infinite size system, where
not only N →∞ but also the macroscopic size R is chosen to be infinite.

We shall use a powerful physical technique which is known as the Renormalization
Group (RG) approach. In fact, it can be applied to many lattice systems. Its starting
point is based on finding the so-called RG fixed point – the particular point in the space
of parameters of the lattice system where the correlation length turns to be zero. Roughly
speaking all the low energy excitations in this case are “photons” or “neutrinos” – massless
particles which are either bosons or fermions moving at light speed. The point ∆ = 0 is
an example of such a RG fixed point. The low energy behavior at the RG fixed point is
described by a special class of QFT, the so-called Conformal Field Theory (CFT). Then
one can consider the vicinity of the RG-fixed point by means of a sort of perturbation
theory where the corresponding Lagrangian density is represented by the form

Lpert(x) = L0(x) +
∑
j

gj Oj(x) , (16)

where {Oj} is the set of all possible local fields while {gj} are the corresponding coupling
constants. Remarkably, if we interesting in the low energy behavior of the system, there
is no need to consider the infinite number of terms in this sum. Only contributions of the
so-called relevant and marginal local fields affect the low energy behavior. The scaling
dimension dO of the relevant (marginal) operator O is smaller than (equal) the space-time
dimension D. As an illustration of the notion of the scaling dimension, let us note that
the scaling dimension of the local fermions fields dψ is equal to 1

2
. This can be seen from

the formulae (11) – the lattice fermions are, of course, dimensionless quantities, so the

2Such fields are sometime referred to as “chiral fields”.
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overall factor a
1
2 sets the dimensions of the local fermion fields. There are only a finite

number of local fields that can be built from ψR, ψ
†
R and ψL, ψ

†
L with scaling dimensions

lower or equal to D = 2. For example,

ψ†RψR , ψ†R∂±ψR , ψ†Rψ
†
LψRψL , . . . . (17)

In fact, not all possible local fields can appear in the sum (16). Some of them are prohibited
by the exact global symmetries of the lattice system. In the case under consideration, the
following symmetries of the XXZ spin chain can be easily established:

• The infinite XXZ spin chain (N = ∞) is evidently invariant with respect to the
parity transformation P,

Pσam P = σa−m (P2 = I) ,

where a = ±, z.

• The symmetry group of the chain contains also the “charge conjugation” C:

Cσ±mC = σ∓m , CσzmC = −σzm (C2 = I) .

• The time reversal symmetry acts as

Tσ±l T = σ∓l , Tσzl T = −σzl .

Notice that the reversal is an anti-unitary transformation, so that C and T corre-
spond to different symmetries of the XXZ chain, even thought they act identically
on the spin operators.

• The infinite XXZ chain is invariant w.r.t.

Kσal K−1 = σal+1 .

• Finally, the chain is invariant under continuous U(1) rotations,

Uα σ
±
mU−1

α = e±iα σ±m , Uα σ
z
mU−1

α = σzm

infinitesimally generated by the

Sz =
1

2

∑
l

σzl : Uα = eiαSz .

Th above lattice symmetries act on on the continuous Fermi fields in the following
way:

CψL(t, x)C = ψ†L(t, x) , CψR(t, x)C = ψ†R(t, x)

PψR(t, x)P = ψL(t,−x) , PψL(t, x)P = ψR(t,−x)

TψL(t, x)T = ψ†R(−t, x) , TψR(t, x)T = ψ†L(−t, x)
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and

Uα ψRU−1
α = eiα ψR , Uα ψLU−1

α = e−iα ψL .

It is easy to see from (11) that the lattice translations act on the continuous Fermi fields
in the following way:

KψR(x)K−1 = iψR(x+ a) , KψL(x)K−1 = iψL(x+ a) .

Since in the scaling limit a→ 0, the Lagrangian density of the effective low energy theory
should possess Z4 symmetry generated by the transformation

ψR 7→ iψR , ψL 7→ iψL .

Exercise III.5. Using the above global symmetries show that the low energy Lagrange
density may contains only the following three real local fields with the scaling dimensions
dO ≤ 2: the free Hamiltonian density H0(x) (13), the free Lagrangian density L0(x) (14)
and the marginal field

O(x) = ψ†Rψ
†
LψRψL .

Hint. We do not need to include in the Lagrange density any total derivatives like, i.e.,
the fields like ∂±(ψ†RψR) and ∂±(ψ†LψL). Also notice that all the fields which contain
powers of the Fermi fields taken at the same point, like ψ†+(ψ+)2ψ−, should be ignored.
At the classical level they vanish identically. The corresponding quantum fields turn out
to be irrelevant operators.

The effect of adding the fields L0(x) and H0(x) to the Lagrangian density L0 is some-
what trivial. These terms can be absorbed by the finite multiplicative renormalization of
the Fermi fields,

ψR 7→ ψ− ≡ Z
− 1

2
ψ ψR , ψ†R 7→ ψ†− ≡ Z

− 1
2

ψ ψ†R

ψL 7→ ψ+ ≡ Z
− 1

2
ψ ψL , ψ†L 7→ ψ†+ ≡ Z

− 1
2

ψ ψ†L ,

and the finite renormalization of the speed of light. The canonical light speed can be
restored by adjusting the relation between the macroscopic energy scale J and the lattice
spacing. Therefore, with a proper choice of the proportionality coefficient in the J − a
relation,

a = C(∆) J−1 ,

the Lagrangian density describing the low energy behavior of the XXZ spin chain in the
disorder regime is given by

L(x) = i
(
ψ†−∂+ψ− + ψ−∂+ψ

†
− + ψ†+∂−ψ− + ψ+∂−ψ

†
−
)

+ 2 g4F ψ
†
+ψ
†
−ψ+ψ− .
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Here g4F is some real, dimensionless constant, depending on the value of the anisotropy
parameter ∆.

The theory governed by the Lagrange density (18) is remarkable in many respects.
First of all let us note that it possesses the Lorentz invariance. The Lorentz group is very
special in 1 + 1 Minkowski space. Under the Lorentz boost with rapidity θ, the linear
combinations x± = x0 ± x1, transform irreducibly x± 7→ e∓θ x±.

Exercise III.6. Explain the relation between the WikipediA definition of the Lorentz
boost

x′ =
x− vt√
1− v2

c2

, t′ =
t− vx

c2√
1− v2

c2

(18)

and the transformation (x′)± = e∓θ x±.

Assuming the the fields ψ+ and ψ− have Lorentz spins +1
2

and −1
2
, respectively, i.e.,

ψ± 7→ e±
θ
2 ψ± ,

it is easy to establish the Lorentz invariance of L. The Lagrange density can be brought
to the conventional QFT form [2] by introducing the γ-matrices

γ0 =

(
0 1
1 0

)
, γ1 =

(
0 1
−1 0

)
: {γµ, γν} = 2 ηµν .

and the two-component Dirac field

ψ =

(
ψ+

ψ−

)
, ψ̄ = ψ†γ0 .

Then L takes the form (up to a total derivative)

L = i ψ̄γµ∂µψ − 1
2
g4F (ψ̄γµψ)(ψ̄γµψ) .

The corresponding model is know as the (massless) Thirring model (1958). In the Con-
densed Matter community the model is known as Tomanaga (1950) – Luttinger (1963)
model.

The four-fermion coupling g4F is a dimensionless constant, i.e., the theory the La-
grangian density does not contain any dimensional parameter. It does not guarantee that
the theory remains invariant at the quantum level. However,

Exercise III.7. Show that the β-function in the Thirring model vanishes at the lowest
perturbative order.

The exact solution of the model, based on the so-called bosonization, shows that the
model is a scale invariant QFT. In other words the whole interval −1 < ∆ < 1 corresponds
to a one-parameter family of CFT.
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The translational, Lorentz and scale invariance fix the form of the two-point function
of the Dirac fields up to the overall constant.

Exercise III.8. Show that the normalization of the fermion fields can be chosen in
such a way that

T 〈ψ(x) ψ̄(0) 〉 =
1

2πi

γµxµ

(−x2)
1
2

+dψ
, where x2 = xµxµ − i0 .

Here dψ = dψ(∆) stands for the scaling dimension.

Notice that, contrary to the case ∆ = 0, the Fermi fields ψ± are not chiral fields.
Nevertheless the formula (11) can be generalized for non-vanishing anisotropy:

Ψm ≈ adψ Aψ
[

e−ipRx
1

ψ−(x1) + e−ipLx
1

ψ†+(x1)
]

Ψ†m ≈ adψ Aψ
[

e+ipRx
1

ψ†−(x1) + e+ipLx
1

ψ+(x1)
]
,

where the dimensionless amplitude Aψ is some non-trivial function of the anisotropy.
The scaling dimension dψ can be found explicitly from the exact BA solution. It reads
explicitly as

dψ =
1

8g
+
g

2
, where g =

1

π
arccos(∆) .

To the best of my knowledge the calculation of the amplitude Aψ remains an open inter-
esting problem.

Finite size corrections to the XXZ energy spectrum

The above consideration allows one to make important prediction for the energy spectrum
in the case ∆ 6= 0. In fact the qualitative structure of the spectra should remain the same
as for the free fermion case. Namely, as N →∞,

EXXZ = −E0
R

a2
+ EThirring + o(N−1) ,

where

R = Na , a = C J−1 .

and

EThirring =
2π

R

[
− ceff

12
+

1

2

(
L+ L̄

) ]
, L, L̄ = 0, 1, 2, . . . ,
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All the dimensionless constants E0, C and ceff depend on the anisotropy ∆ = cos(πg). It
is most simple to calculate the ratio E0/C:

Exercise III.9. Using the BA solution (in particular the result of Exercise II.7) show
that

E0/C = − cos(πg)− 4 sin(πg)

∫ ∞
0

dt

π

sinh(gt)

sinh(t) cos((1− g)t)
.

One can also show that

C =
1− g

2 sin(πg)
.

In fact, both E0 and C are the so-called “non-universal” constants. Their explicit values
depend on the details of the microscopic Hamiltonian. The universal part of the energy
is hidden in EThirring, and is controlled by the underlying CFT. Remarkably, all universal
effects are encoded in the scaling part of the Bethe roots at the edges of their distribution.

Exercise III.10. Show that

−ceff

12
= Θk(i) + Θk̄(i) ,

where the function Θk(i) was defined in Exercise I.5

k = 1
2

(
Sz + θ

g

)
, k̄ = 1

2

(
Sz − θ

g

)
.

Then using the formula (c) from Exercise I.8, one has

ceff = 1− 12g (k2 + k̄2) .

Summary of the ODE/IQFT correspondence

Scaling limit: N, J ∝ a−1 →∞, R = Na− fixed

Ψm ∝ e−ipRx ψR + e−ipLx ψ†L

HXXZ →HThirring =

∫ R

0

dx
(

iψ†L∂xψL−iψ†R∂xψR−2g4F ψ
†
Lψ
†
RψRψL

)

The full set of the stationary states in the Thirring IQFT ↔
a set of pairs of the “monster” potentials

(
Ueff(z), Ūeff(z̄)

)
!
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