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The ultimate goal: a quantum theory of gravity

e This is an important fundamental question: quantum gravity
is necessary to desribe processes at very small distances and
high energies, of the order of

lp ~1.62-107%m, Ep~1.96-10°J,~ 12210 GeV,
and to understand the early Universe.

e Gravity cannot be quantized by analogy with other fields.
The theory must involve some nonlocality at the Planck scale.

e String theory may be the way to go, but it is complex. The
non-perturbative string theory is not fully defined yet; there
are open problems. [Disclaimer: I am not a string theorist.]

e Can we say something qualitative about quantum gravity be-
fore we have a “theory of everything”?
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e Sachdev, Ye, 1993 — a similar model with SU(M) spins and
two-body interactions. (The spins are made fermions.)

e This model (Kitaev, 2015):

— The same Green function G(7) = —(T x,(7)x;(0)).

— Disorder effects (replica-off-diagonal terms) are negligi-
ble, which simplifies the study of four-point correlators.

— Emergent conformal symmetry (for 5J > 1) and
the corresponding pseudo-Goldstone mode.

e Detailed calculations: Maldacena, Stanford, arxiv:1604.07818,
Kitaev, Suh, arXiv:1711.08467



Why this model?

e Sachdev and Ye were interested in strongly correlated systems
at low temperatures.

e My goal was to capture some features of quantum gravity.

— Observation: The semiclassical theory of gravity has
some compelling results (e.g. the Hawking radiation) but
also some paradoxes.

— Concrete goal: find some fully quantum toy model
that would be similar to gravity at the semiclassical level.

— Important step: identify some universal behavoirs in
semiclassical gravity. One of them is concerned with
out-of-time-order (OTO) correlators.

e This 0 + 1-dimensional model has a collective mode that is
similar to dilaton gravity in 1 + 1 dimensions.



Black holes: introduction

e Schwarzschild metric (for r > a):

- in 3 4+ 1 dimensions,

d
di* = —f(r)dt* + f(rr) + r2dQ? firy=1- g, a=2GM

e The apparent singularity at » = a can be removed by a coor-
dinate change.

— Rindler patch of the Minkowski space:
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”Eternal” black hole

e Near r = a, the space is similar to the flat Minkowski space

and can be extended beyond the horizon.
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Schwarzschild coordinates Extended space in new coordinates

e Time translation acts as a Lorentz boost near the horizon

Surface gravity: s = (Lorentz boost at r = a)/(time at r = 00)

Singularity
(end of space-time)



Quantum black holes: three levels of understanding

A
e Quantum fields in classical space (Hawking): 7' = Qi, = —
m

e Gravitational interaction between incoming and
outgoing radiation:

— Dray-t"Hooft shock waves

— Out-of-time-order correlators (OTOCs):
(W)Y (0)Z(t) X(0)) fort < (2rT)'InS
— Correlations in the Hawking radiation
relative to a purifying system, which is
a part of the thermofield double state
|\If> — Z71/2 Zn efEn/(QT) |n’ n>

e S-matrix and correlations in the Hawking radiation itself ?
(which appear after half of the black hole has evaporated). A



Hawking radiation

e The black hole horizon is a special type
of heat bath. It can be characterized by
time-dependent correlation functions.

— Causal correlators of free bosons or

fermions, such as ([va(2), ¥5(y)]),
are found by solving the wave equa-

tion in the physical region.

— More general correlators, e.g.

(Ya(x)s(y)), depend on the
quantum state on the past horizon.

e Assumption: the field correlators at the past horizon are like
in the flat space.

e The vacuum (zero-temperature) correlators in the (u,v) coor-
dinates are equivalent to thermal correlators in terms of the
global time t.



Hawking radiation (cont.)

e Example: free (Majorana) fermionin 1+ 1D

(s (u,0) Y, (v, 0)) ~ (u —ul)_l,

on the past horizon,
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e Entanglement pattern (perhaps needs revision in the full quan-

tum theory): U

— Radiation entering the physical region is en-
tangled with some field modes behind the
horizon.




Black hole thermonynamics

e Thermodynamic quantities (such as temperature and entropy)
are related to geometric parameters:

— horizon area: A = 4ma?, where a = 2GM:;

— surface gravity: s = 1/(2a).
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e Derivation sketch:
1
— An identity in classical gravity, dM = e »dA looks
™

like the first law of thermodynamics, dE =T'dS.

2
— Hawking’s relation (quantum): 77 '= = -,
»



How does information get out of the black hole?

e Gravitational interaction between in-
coming and outgoing particles is ampli-
fied by the Lorentz factor, which grows
exponentially with time:
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e (lassically, an initial gravitational per-
turbation evolves into a “shock wave”
at the past horizon, Drey and t’Hooft
(1985), t’Hooft (1986).

e Such shock waves don’t alter the quantum state on the past
horizon, which is translationally invariant. They show up in
out-of-time-order (OTO) correlators, e.g. (D(t) C(0) B(t) A(0))
(Shenker and Stanford, 2013, 2015).



Naturally ordered (Keldysh) vs. OTO correlators

e Keldysh correlators can be measured by interaction with a
prObe H= Hsystern + H, probe — Z

System probe

The probability of some measurement outcome,

pP= <Texp (z’/H(t)dt) IT T exp <—i/H(t)dt)>

expands into terms like this:
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e OTO correlators can only be measured by reversing the time
evolution (or using the thermofield double)

For example, | (D(t)C(0)B(t)A(0))




Out-of-time-order (OTO) correlators

e First discussed by Larkin and Ovchinnikov (1969). Classi-
cally, they describe the divergence of phase space trajectories
(a.k.a. the “butterfly effect”.) p
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e For typical non-integrable systems with all-to-all interactions:

— At early times (but after the two-point correlators have
decayed):

(D(t)C(0)B(t)A(0)) — (DB)(CA) ~ %e”t

(At later times, the exponential growth saturates.)

— Upper bound on the growth exponent (Shenker, Stan-

ford, and Maldacena, 2015):
| w < 21T |



T’Hoofts effect and universality

e The OTO correlators related to
t'Hooft’s effect are calculated in a
well-defined setting: black hole in a
“box” (actually, the anti-de Sitter

space).
pace) N AT

e One  considers  correlators  like
(D(t)C(0)B(t)A(0)), where  the
operators A, B, C, D act near the
space boundary.

AdS mirror (r

Angulariy
e The growth exponent s equals the surface gravity, hence

due to Hawking’s relation.

e Most many-body systems give (much) smaller values, but the
SYK model matches the black hole result.
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Some failed attempts to fake a black hole

e Random Heisenberg model with all-to all coupling

H=-> ) JwSysy, J3=J°/N.

i<k «

e One can argue that OTO spin correlators go like N ~te*!. But:

—IfT>J, then »x~ J K T.
— If T'< J, then the system freezes into a spin glass.

e The random Hubbard model becomes a Fermi-liquid at low
temperatures (if the coupling is weak) or a spin glass (if the
coupling is strong).
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e Sachdev, Ye, 1993 — a similar model with SU(M) spins and
two-body interactions. (The spins are made fermions.)

e This model (Kitaev, 2015):

— The same Green function G(7) = —(T x,(7)x;(0)).

— Disorder effects (replica-off-diagonal terms) are negligi-
ble, which simplifies the study of four-point correlators.

— Emergent conformal symmetry (for 5J > 1) and
the corresponding pseudo-Goldstone mode.

e Detailed calculations: Maldacena, Stanford, arxiv:1604.07818,
Kitaev, Suh, arXiv:1711.08467



What is special about the SYK model?

e Strongly correlated at low temperatures (5.J > 1);
not a Fermi liquid or glass

e Exactly solvable:
— Dynamic mean field approximation for large N

— Complete analytic solution for N > gJ > 1

quantum fluctuations Analytic solution of
are small the DMF equations

e Emergent symmetries for 5J > 1:
— The equilibrium Green function G(71,72) is PSL(2,R)-
invariant. (Here, 7 € [0, 8] is the Matsubara time.)
— Effective mean-field action I[G] is invariant under time

reparametrizations (symmetry group Diff(S1)).

e The Diff(S')/PSL(2,R) pseudo-Goldstone mode plays the

same role as the t’Hooft-Drey shock waves.



Dynamic mean field

e Local field acting on the j-th Majorana mode:

, i
j G=—lig—=—g > TikmXkXiXm
k,l,m
This is a sum of many small terms, therefore the fluctuating vari-
ables &;(7) are Gaussian.

o Let
G(m1,72) = —(Tx;(m)x;j(m2)), (1, 72) = —(T&i(m1)§;(72))

Self-consistency (Schwinger-Dyson) equations:
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may be neglected
if J>1



Replica-diagonal effective action for N > 1

e Dynamic variables: ¥ and G.

— . InzM . :
BF=-InZ=— z\lelgo i (M is the number of replicas)
negligible
if BT > 1

BF 4
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e Stationary points are solutions of the Schwinger-Dyson equa-
tions.




A soft (pseudo-Goldstone) mode

In the zero-temperature limit, 5J — oo, the Schwinger-Dyson
equations and the effective action are invariant under

G(r,12) — G(f(m), f(72)) f(11)2 f(12)?
S(r, 1) — B(f(m), f(72)) f(m) 72 f () 72

The solutions have the form
G(Tlﬂ'z) =G (f(Tl)v f(7'2)) f/(Tl)Af/(TQ)A

where Goo(Th 7’2) = b(Tl = 7'2>_2A7 f<7-> — ei@(T).
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When (J is large but finite, the energy
depends on the map ¢ : St — S (“de-

formation of a spring”). The minimum

21
energy corresponds to (1) = —7.
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Effective action for the pseudo-Goldstone mode

e The effective action is

[=BF = —aSNJ—l/ Sch (e, 7) dr
0

where ag ~ 1 and Sch(f(7),7) is the Schwarzian derivative:
f/// f//
Sch(f(7),7) =7 — 3 7
e This effective action also describes a thermally fluctuating
string or balloon in the hyperbolic plane:

The hyperbolic plane
is represented by the
\ Poincare disk model:
4(dr? + r2dp?)
(1—1r2)2

I=asN(L — A —2n)

length area

constraint: L = (.J

de? =

The minimum is achieved on circles



Connection to gravity in 2 or 1 + 1 dimensions

Maldacena, Stanford, Yang (2016)

e The effective boundary action can be written
using a dilaton field ® in the bulk:
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e The Lorentzian version describes quantum fluctuations of the
space boundary (“anti-de Sitter mirror”).
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A stationary configugation

with mismatched left and right

boundaries is equivalent to a ]

pair of t’Hooft’s shock waves:




Summary and further plans

e Some properties of black holes and the SYK model are similar.
In particular, the OTO correlators grow in time at the highest
possible rate, s = 27T

e The remainder of this lecture:

— Feynmann diagrams;

— Emergent Diff(S') and PSL(2, R) symmetries.
o Next lecture:

— The replica-diagonal effective action;

— Ladder diagrams and conformal kernel.



